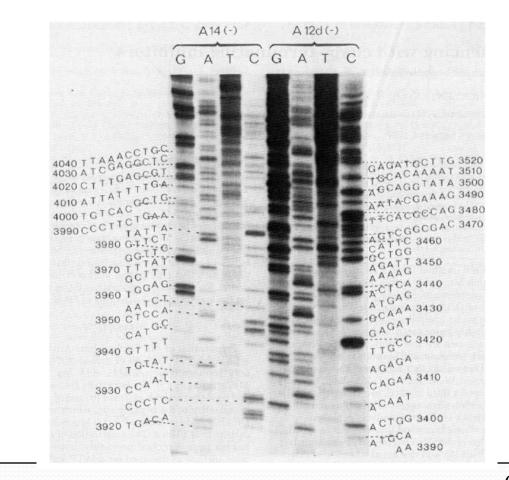
Clinical Sequencing by Sanger: State of the Art in a Next-Gen World

Elaine Lyon, PhD Associate Professor of Pathology University of Utah Medical Director of Molecular Genetics and Genomics ARUP Laboratories

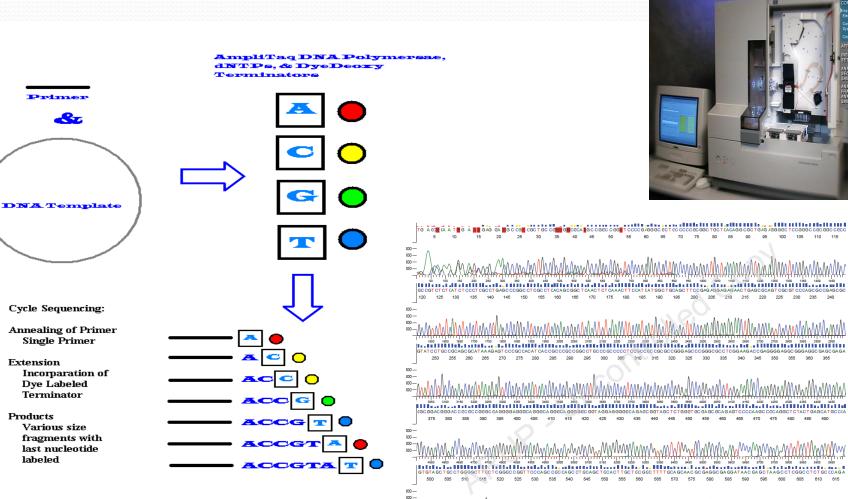
- Describe assay design considerations for complete coverage of regions to be interrogated
- Discuss validation approaches to establish performance characteristics and ensure test accuracy and robustness
- List challenges in and solutions for complex data analysis and interpretation
- Discuss workflow measures for implementing efficient Sanger sequencing assays into the clinical laboratory


Proc. Natl. Acad. Sci. USA Vol. 74, No. 12, pp. 5463-5467, December 1977 Biochemistry

DNA sequencing with chain-terminating inhibitors

(DNA polymerase/nucleotide sequences/bacteriophage ϕ X174)

F. SANGER, S. NICKLEN, AND A. R. COULSON


Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, England

1977

Courtesy of Karl Voelkerding

1986 - ABI Sequencing (Sanger with Fluorescent Terminator)

Margan alexand Margan Margan malana bala baabal balala

ARA 3100 GENETIC ANALYZER

365

UNIVERSITY OF UTAH

000

Clinical Sequencing Assays

- Analytical Validation
 - Familiarity
 - Design
 - Optimization
 - Accuracy
 - Robustness (reproducibility)
 - Interpretation
- Clinical validation
 - Clinical sensitivity
 - Clinical specificity

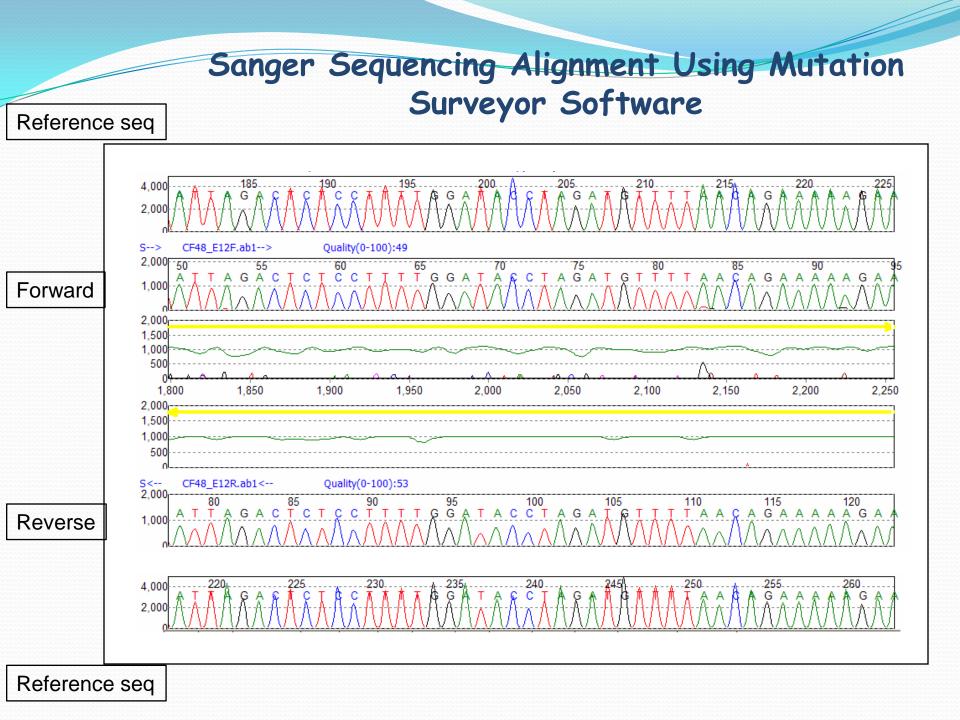
Familiarization and Planning

• Reference sequence

Gene	GBK file (analysis)	GBK file (reporting)	Mutation database numbering differences	MLPA exon numbering differnences	<u>GVIE -</u> <u>ARUP</u> <u>Wiki</u>	CDS	Inheritance
PTEN	NC_000010.10	NM_000314.4	None	NO		No	A.dominant

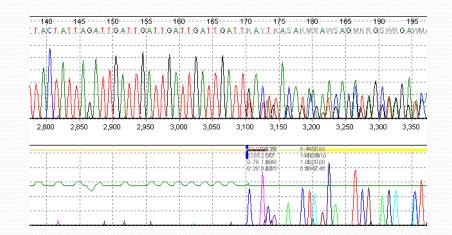
- Alternative transcripts
- Homology checks
 - pseudogenes
- Inheritance
- Databases
 - Locus specific
- Known benign variants

Regions Interrogated


- Targeted exons
 - Example: MEN₂
- All coding exons
 - 'Full gene or full sequence analysis'
- Intron/exon boundaries
 - +20-+50
- Known deep intronic mutations
- Regulatory regions
 - 5' UTR, promoter
 - 3' UTR

- Often per exon
- Design around pseudogenes
- Avoid known variants
 - Interfere with PCR
- All at same PCR conditions?

PTEN Amplicon Sizes							
Amplicon	Amplicon size (bp)						
Exon 1	252						
Exon 2	296						
Exon 3	220						
Exon 3 new	400						
Exon 4	234						
Exon 5 short	342						
Exon 5 long	396						
Exon 6	383						
Exon 7	355						
Exon 7 new	356						
Exon 8 short	299						
Exon 8 long	497						
Exon 9	322						
Promoter	697						


	PTEN PCR and Sequencing Primers:	
Exon	Forward Primer $(5' \rightarrow 3')$	Reverse Primer $(5' \rightarrow 3')$
1	TGTAAAACGACGGCCAGTCATTTCCATCCTGCAGAAGA	CAGGAAACAGCTATGACCCAAACTACGGACATTTTCGC
2	TGTAAAACGACGGCCAGTACCTTTTATTACTCCAGCTATAGTG	CAGGAAACAGCTATGACCTGTGGCTTAGAAATCTTTTCTAAATG
3	TCTAAAACCACCCCCACTTCTGTCTTTTGGTTTTTCTTGATAGTA	CACCAAACACCTATCACCCTCTAAGAAGCAGATAACTTTCAC
3 new	TGTAAAACGACGGCCAGTGGGGTATTTGTTGGATTATTTAT	CAGGAAACAGCTATGACCCCCAACAATGTTTTACCTCATCA
4	TGTAAAACGACGGCCAGTAAGATTCAGGCAATGTTTGTTAGT	CAGGAAACAGCTATGACCTCTCACTCGATAATCTGGATGAC
5s	TGTAAAACGACGGCCAGTTTATTCTGAGGTTATCTTTTACCACA	CAGGAAACAGCTATGACCGAAACCCCAAAATCTGTTTTCCA
51	TGTAAAACGACGGCCAGTCTGTTAAGTTTGTATGCAACATTTCT	CAGGAAACAGCTATGACCTTTCCAATAAATTCTCAGATCCAG
6	TGTAAAACGACGGCCAGTAAATGGCTACGACCCAGTTAC	CAGGAAACAGCTATGACCTAATTTGTTCAAATGCTTCAGAAA
7	TCTAAAACCACCCCCACTATTGCTGATATTAATCATTAAAAATCGT	CACCAAACACCTATCACCAACAAATTATAGTTCCTTACATGTCA
7 new	TGTAAAACGACGGCCAGTAAAATCGTTTTTGACAGTTTGACA	CAGGAAACAGCTATGACCCACCTGCAGATCTAATAGAAAACA
8s	TGTAAAACGACGGCCAGTCAAAATGTTTCACTTTTGGGTAAA	CAGGAAACAGCTATGACCGCTGTACTCCTAGAATTAAACACACA
81	TGTAAAACGACGGCCAGTTGCCTTATAATAGTCTTTGTGTTTACC	CAGGAAACAGCTATGACCGTCAAGCAAGTTCTTCATCAGC
9	TGTAAAACGACGGCCAGTTGTTCATCTGCAAAATGGAAT	CAGGAAACAGCTATGACCTGGTGTTTTATCCCTCTTGATAAAAA
promoter	TGTAAAACGACGGCCAGTCCATCTCAGCTTTCATCATCAG	CAGGAAACAGCTATGACCCGGTTAGAAAAGACGAAGAGGA

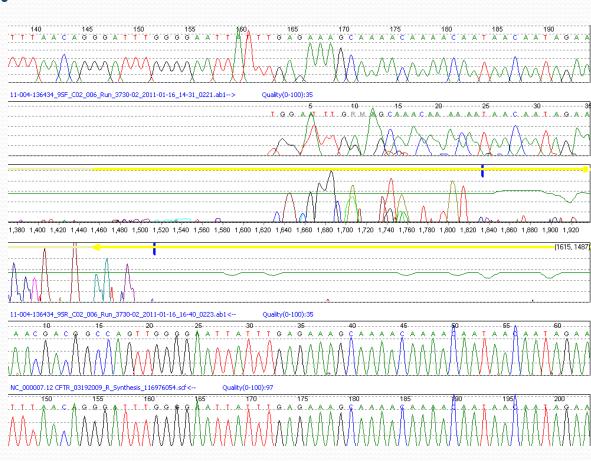
Notes on Primer Design:

Difficult Regions

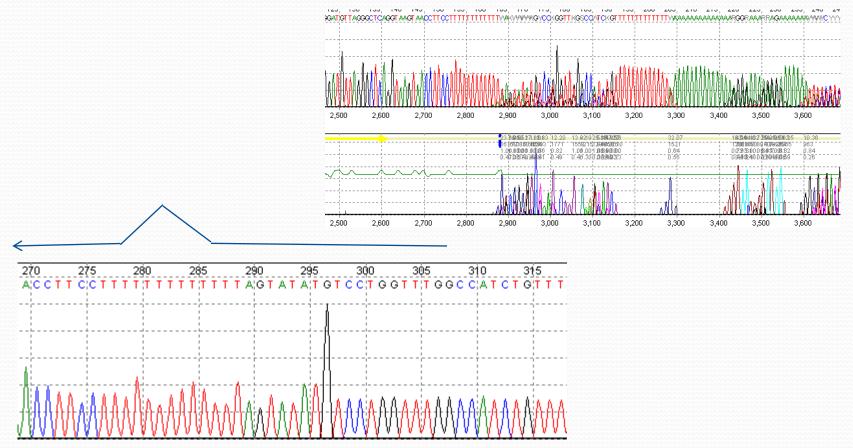
- High GC content
 - Optimization
- Secondary structure
 - Optimization or avoidance
- Benign Insertions/deletions
 - Example: CFTR GATT
- Pseudogenes
 - Example: PMS₂
- Repeat motifs
 - Example: CFTR intron 8 TG/T
 - Example: Homopolymers

CFTR GATT


- Design Long and Short amplicons
- Cover all regions


GTGT G T G T G T G T G T G T T TT TALA A G G G 3.500 3.650 3,700 3.450 3 550 3 600 3 750 3 800 3.850 3 900 34_9LF_D02_005_Run_3730-02_2011-01-16_14-31_0221.ab1--> Quality(0-100):0 205 - GIT-K-T-T-TIT-T-W-W-MIA 3,500 3,600 3,650 3,700 3,750 3,800 3,850 3,450 3,550 3,900 (371) 7.08 5.346.52 17021911 1.001.00 130 G T 1.180 1.200 1.220 1.240 1.260 1.280 1.300 1.320 1.340 1.360 1.380 1.400 1.420 1.440 1.460 1.480 1.500 1.520 1.540 1.560 1.580 1.600 36434_9LR_D02_005_Run_3730-02_2011-01-16_16-40_0223.ab1<--Quality(0-100):0 235 240 245 250 GIT GIT GIT GIT GIT GIT GIT GIT KIT KIT TIT TIT AIA C A GIG GIA 1.320 1.340 1.360 1.380 1.400 1.420 1.440 1.460 1.480 1.500 1.520 1.540 1.560 80 811 00 1 0

370


CFTR intron 8 TG/T region F and R primers for Long amplicon

CFTR intron 8 TG/T region F and R primers for Short amplicon

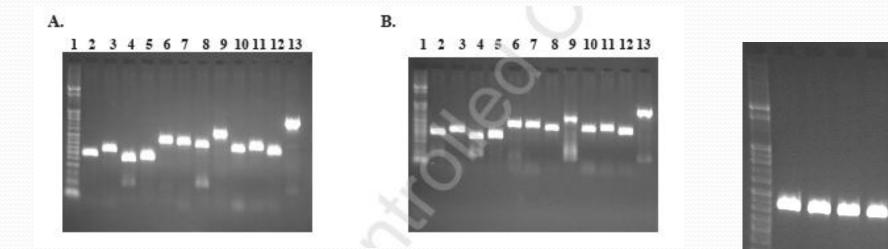
Loop-out/masking

Analytical Validation

Performance characteristics

• *Accuracy

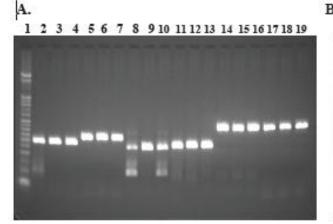
Resul PTEN	Clinically	Clinically	Accuracy 1	Accuracy 2	Accuracy 3	Accuracy 4	Accuracy 5
Exon	Diagnosed	Diagnosed	(Cftr33)	(M3 DNA)	(CF16)	(CFTR41)	(11F)
LIUI	Sample 1	Sample 2	(01133)	(MS DIAK)	11.21.08	12.3.08	(1117)
1	wt	wt	wt	wt	wt	wt	wt
2	wt	wt	wt	wt	wt	wt	wt
3	wt	wt	wt	wt	wt	wt	wt
4	wt	Splice site mutation c.253+1G=GC	wt	wt	wt	wt	wt
5	c.1420C>CT	wt	wt	wt	wt	wt	wt
6	wt	wt	wt	wt	wt	wt	wt
7	wt	wt	wt	wt	wt	wt	wt
8	wt	wt	wt	wt	wt	wt	wt
9	wt	wt	wt	wt	wt	wt	wt
promoter	wt	c.l- 1085C>CT	wt	wt	wt	wt	wt
Intron	IVS1= c.80-96A>AG IVS8= c.1026+32T>TG	IVS1= c.80-96A>AG IVS4= c.233+1G⇒GC IVS8= c.1026+32T>TG	IVS1= c.80-96A>AG IVS8= c.1026+32T>TG	wt	IVS1= c.80-96A>AG IVS8= c.1026+32T>TG	wt	wt

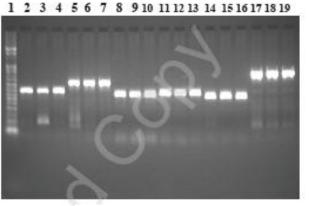

Quality checks

- Trace scores: average quality score
- Signal intensity
- Signal to noise ratio
- %QV20+ :percentage of bases with quality values \geq 20

M13F	F				To be se	equenced				R	M13I	R	
Amplicon length for %QV20+ calculation Sequencing Results for PTEN													
EXON 1		TS	QV20+	AL (in bp)	%QV20	S/N (A)	S/N (C)	S/N (G)	S/N (T)	SI (A)	SI (C)	SI (G)	SI (T
sample1_Acc_	ex1F	43	227	270	84.074	625	308	423	275	4031	1997	2396	2284
sample1_Acc_	ex1R	46	238	270	88.148	1643	801	1514	878	10706	5418	8925	7372
sample1 With	in ex1F	39	215	270	79.63	817	338	537	328	5523	2268	3047	2761
sample1 With	in ex1R	46	234	270	86.667	1641	822	1789	936	11283	5418	10631	7470
sample1_Betw	_ex1F	39	221	270	81.852	347	159	233	175	3349	1330	1697	1674
sample1_Betw	_ex1R	46	236	270	87.407	1304	612	1173	684	9187	4062	7181	5642
	Average	43.2	228.5	270	84.63	1062.8	506.667	944.83	546	7346.5	3415.5	5646.2	4534
Standard	Deviation	3.43	9.1378	0	3.3844	546.55	277.831	637.8	328.63	3477.6	1795.3	3764.8	2619

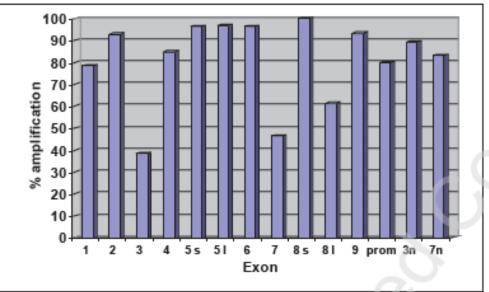
Total amplicon length

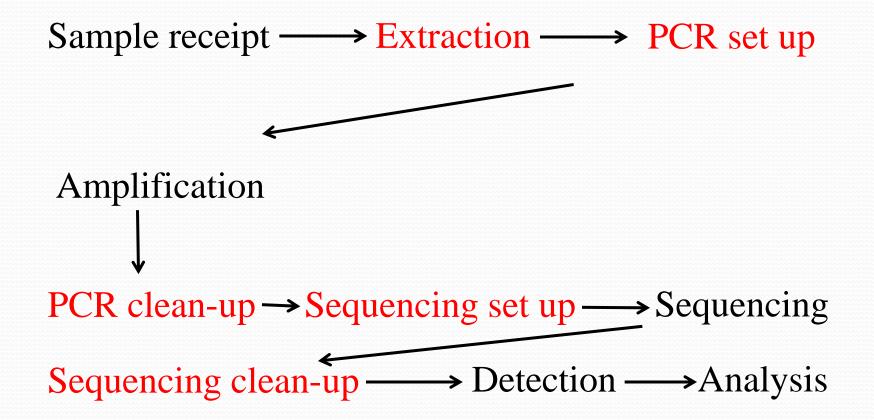

Reproducibility - PCR product



*Intra-run variability

Re-design of exon 3


Reproducibility - PCR products

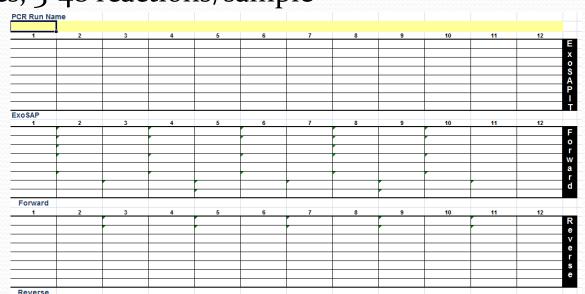


*Inter-run

All reactions

Workflow

Workflow


- M13 tagged primers
- Workflow
 - Low throughput per sample
 - High throughput per exon
- Primer plate

PCK	Tray Map											
	Sample #1	Sample #2	Sample #3	Sample #4	Sample #5	Sample #6	Sample #7	Sample #8	Sample #9	Sample #10	Sample #11	Sample #12
	1	2	3	4	5	•	7	:	,	10	11	12
Α	10	10	10	10	10	10	10	10	10	10	10	10
В	11	11	11	11	11	11	11	11	11	11	11	11
С	13	13	13	13	13	13	13	13	13	13	13	13
D	14	14	14	14	14	14	14	14	14	14	14	14
Ε	15	15	15	15	15	15	15	15	15	15	15	15
F	16	16	16	16	16	16	16	16	16	16	16	16
G												
Η												

Thermocycler method: pcr- men

Sequencing Throughput

- High throughput
 - 96 samples, one exon (amplicon)/plate
- Medium throughput
 - 1 plate 1-8 samples, 3-48 reactions/sample
- Low throughput
 - Manual is faster

Clinical Parameters

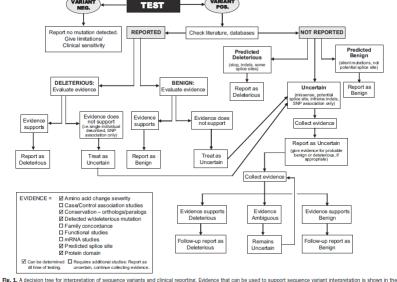
- Clinical sensitivity
 - Percent affected individuals in which mutations can be found in the gene
 - Mutation detection rate
- Clinical specificity
 - Percent of unaffected individuals in which mutations are found in a gene
 - Penetrance
- Reference or reportable range
 - Description of gene regions interrogated
 - Mutations tested
 - Zygosity

Implementation

- Validation summary
 - With refseq, known SNPs, known double mutations, database information
- Standard operating procedure
- Training
- Costs
- Test information
- Reporting
- Internal databases
- Proficiency testing

Reporting

- Result
 - Standard vs Traditional nomenclature
 - Example: Beta globin amino acids are commonly known from the mature protein (-1 amino acid)
 - Nucleic Acid
 - Example: c.2183delAA
 - Amino Acid
 - Example p.G542X
- Reference sequence (version) and numbering scheme
- Interpretation
- Recommendations


ACMG Recommendations

• Report clinical significance

• "... the laboratory must provide the interpretive information and a best estimate of clinical significance for the variants....."

box at the bottom.

ACMG recommendations for standards and interpretation and reporting of sequence variations. Richards et al. Genet Med 2008 10:294-300

Mutation Categories

- Previously reported
 - Pathogenic
 - Benign
 - But check original reports
- Previously unreported
 - Expected pathogenic
 - Suspected pathogenic
 - Uncertain
 - Suspected benign
- Further classification
 - Severe, moderate, mild, very mild

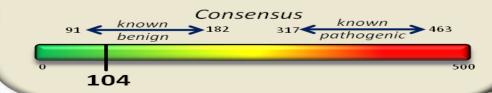
Interpretation

- Exonic
 - Frameshift (presumed pathogenic)
 - Nonsense (presumed pathogenic, except 3' end?)
 - In-frame deletion/duplication (may or may not be pathogenic)
 - Missense (may or may not be pathogenic)

Missense Mutation

- Evidences:
 - Reported before?
 - Seen in affected or control individuals?
 - Conserved amino acid?
 - Over gene families or species?
 - Active site in the protein?
 - Affect mRNA levels?
 - Occur in the general population?
 - Co-occurrence with causative mutations
 - Track with disease in the family?
 - Functional studies available?
 - IHC, structural analysis, RNA, biochemical studies

Amino Acid Prediction


- Existing predictions programs
 - PolyPhen 2, SIFT, Pmut, PhD-SNP, nsSNPAnalyzer, AlignGVGD
- Predictions using machine learning classification tools.
 - Gene-specific algorithms outperform generalized tools
 - Developed a standardized metric for evaluation of uncertain gene variants.
 - Visualization models for clinical implementation
- Emerging "authoritative" (clinically curated) gene variant/disease archives

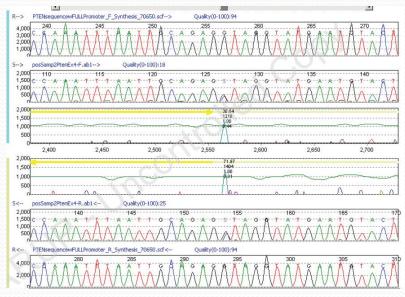
ACADM UNCERTAIN VARIANTS

ACADME - A1705

<u>Predictor</u>	Call	Score
SIFT	tolerated	21
PolyPhen	benign	27
PMut	neutral	7
MutPred	benign	45
PSAAP	benign	4

PREDICTED PATHOGENIC

PREDICTED BENIGN


ACADME - A372D Predictor Call

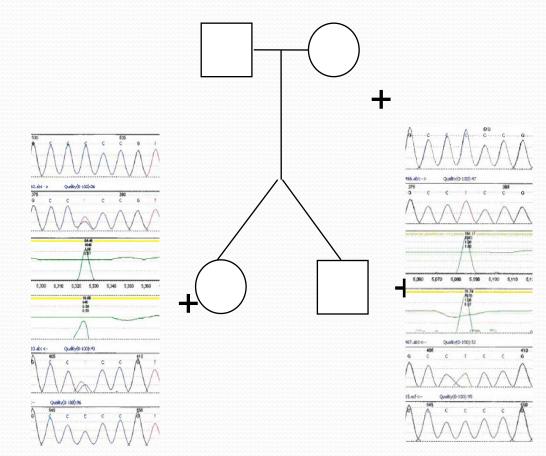
Predictor	Call	Score	
SIFT	affects function	98	
PolyPhen	probably damaging	99	
PMut	pathological	82	
MutPred	pathogenic	88	
PSAAP	pathogenic	84	

Intronic Mutation

- Intronic
 - has it been reported before?
 - approximately 20-50 bases
 - potential splice site <u>http://www.fruitfly.org/seq_tools/splice.html</u>
 - consensus sequence GTAG
 - Donor GT(start of intron)
 - Acceptor GA (end of intron)
 - Branch site U(18-40 upstream of 3' splice site)

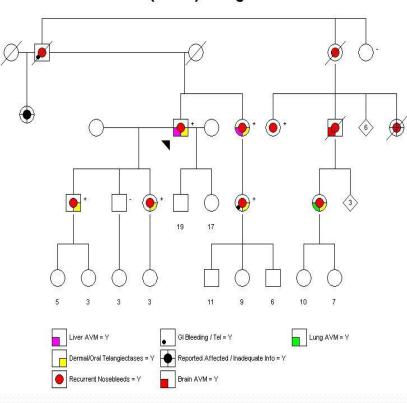
Finding Rare Variants

- CFTR Example
 - Child with F508del/I1028T
 - Mother also with F508del/I1028T
 - In cis
 - Does not explain symptoms in child


- Alpha globin Example
 - Apparent homozygous for p.X143Glu (Hb Seal Rock)
 - Subsequent deletion analysis showed -3.7Kb deletion
 - Compound heterozygous
 - Mild Hb H disease

Genetic Evidence Family Concordance Studies

- Autosomal dominant/ X-linked/de novo mutations
- Single (affected) individual from a family tested
 - Results: sequence variant of unknown significance
- Test additional family members
 - Affected/Unaffected
 - Greater statistical power with affected distant relatives
- Evaluate pedigree data for evidence of causality
- Test hypothesis: Variant confers specified risk against the hypothesis of complete neutrality
- Determine likelihood ratio for causation


MECP2 Missense Mutation

- In silico prediction
 - Polyphen2: unknown
 - SIFT: Tolerated
- Present in 'normal' mother
 - Variable phenotype due to X inactivation?
- Present in unaffected brother

Extended Pedigree from Clinical Case

HHT 2 (ALK1) Pedigree

(R479Q)

Bayesian Factor = 461:1 in favor of causality

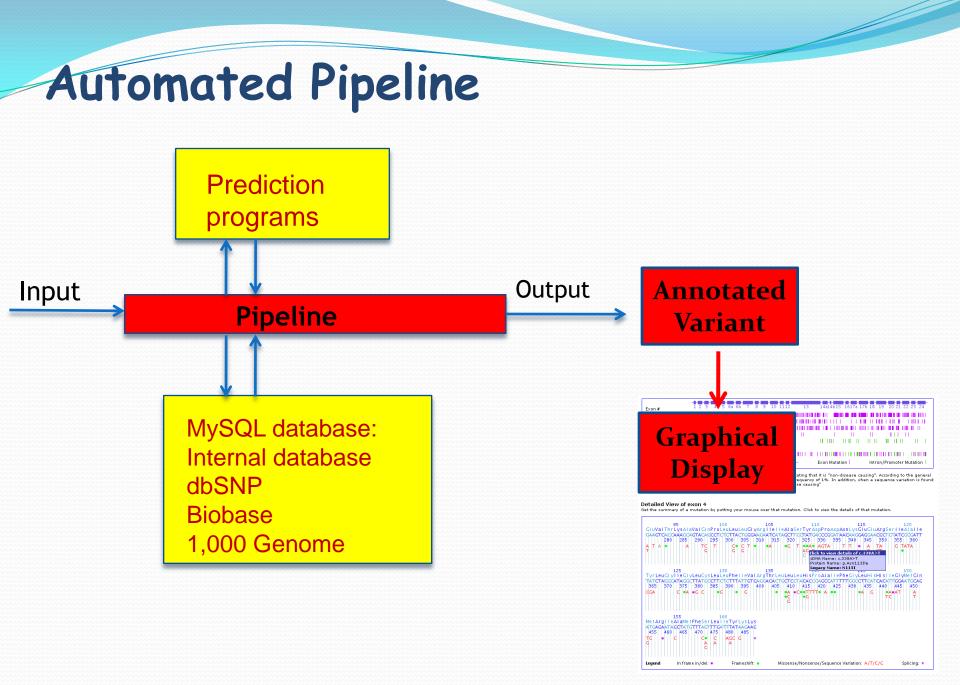
Likelihood Ratios: In Favor of Causality

Pedigree. Gene/Mutation	Bayesian Factor
1. ACVRL1 p.R479Q	461.58
2. ACVRL1 p.G402S	19.31
3. ACVRL1 p.C344R	139.15
4. ACVRL1 p.E407G	63.63
5. <i>ENG</i> p.W196R	121.35
6. <i>ENG</i> p.L300P	31.82
7. ENG p.R529H	7.98

Bayrak-Toydemir P. et al Experimental and Molecular Pathology 85 (2008) 45-49

Variant Annotation Summary

• Current manual method:


- Check internal database for variant
- Locus-specific databases
- dbSNP, frequency (not all benign)
- Prediction algorithms (Polyphen-2, Sift, others)

95 records found

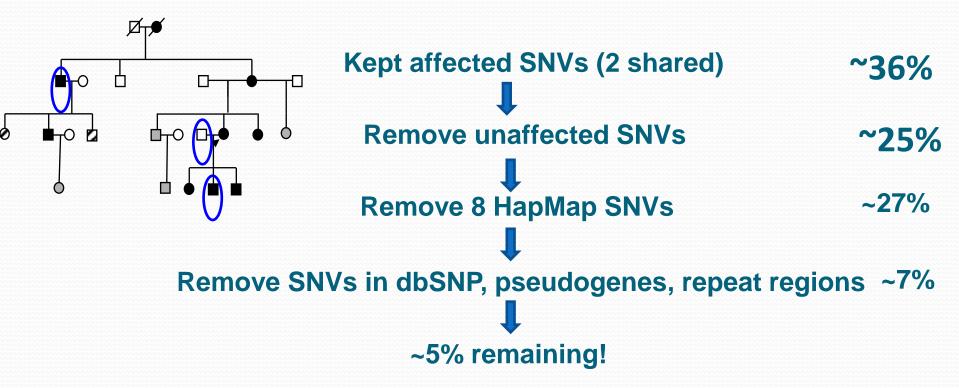
- Literature search
- Google

GAL7	Datal	base

▲ Location	Mutation Type	Nucleotide Change	Protein Change	Transport Activity	Expression	References	Comments
-	-	Nucleoude Change	Protein change	Transport Activity	Lynession	Nelerences	Commenta
5'UTR	Polymorphism	c207G>C				Peltekova et al. 2004	
5'UTR	Uncertain	c185A>C		33		Calderon et al., unpublished	
5'UTR	Uncertain	c149G>A		33		Calderon et al., unpublished	
5'UTR	Deletion	c91_22del				Nezu et al. 1999	
5'UTR	Polymorphism	c78C>T		33		Koizumi et al., 1999	
5'UTR	Polymorphism	c77G>A		33		Koizumi et al., 1999	
5'UTR	Polymorphism	c38A>C				Calderon et al., unpublished	
Exon 1	Missense	c.3G>T	p.M1I	<5		Dobrowolski et al. 2005	
Exon 1	Insertion	c.4_5insC	p.R2PfsX136			Nezu et al. 1999	
Exon 1	Nonsense	c.12C>G	p.Y4X	<1		Wang et al. 2001	
Exon 1-8	Deletion	c.33_1427del	p.G12_L477del	2 Lar	ae deletion fou	ind in two patients. Patient	
Exon 1	Missense	c.43G>T	p.G15W	3 10	f Italian descer	nt was heterozygous for this 18VfsX68. Patient 2 of	
Exon 1	Missense	c.51C>G	p.F17L	14 Me	xican descent v	vas heterozygous for this	
Exon 1	Missense	c.56G>C	p.R19P	<5 mu	tation and p.T2	ation and p.T219SfsX20.	
Exon 1	Missense	c.59T>A	p.L20H			Calderon et al., unpublished	
Exon 1	Deletion	c.67_69deITTC	p.F23del	2		Lamhonwah et al. 2002	
Exon 1	Missense	c.83G>T	p.S28I	<12		Rahbeeni et al. 2002	

Courtesy of P. Ridge

Revolutionary Approach

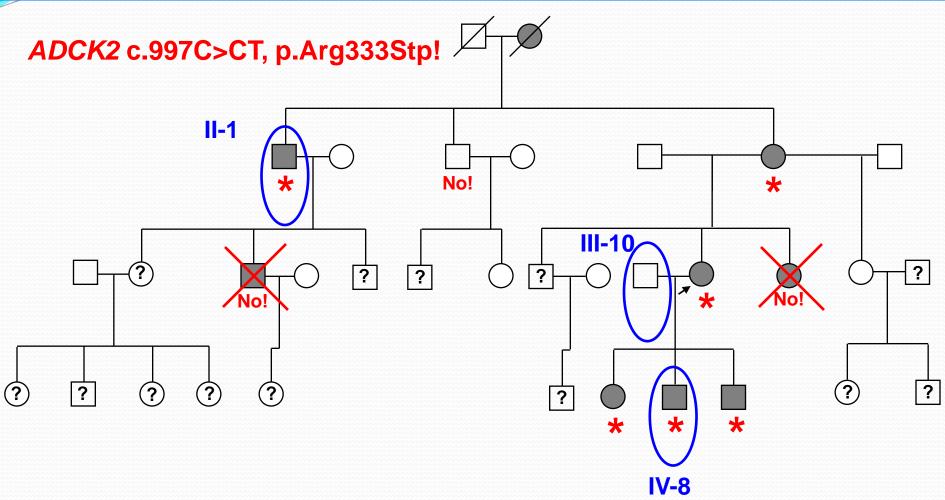

- Next-generation sequencing (NGS) 2005
 - Massive Parallel Sequencing in a flow cell (400 Mb to 30Gb)
 - Large scale sequencing/re-sequencing of the chromosome possible
 - Clonally amplified templates
 - Single molecule templates

Next Gen Sequencing

- Gene panels
 - Genes known to cause disease
 - Variant discovery
- Whole exome
 - Gene discovery
- Whole genome
 - Gene discovery

Data Analysis: Variant Filtering

Pinpoint which gene causes HHT₄!



Focus on NS-SNVs in protein coding regions, UTR, splice sites

Lead candidate gene: *ADCK2* c.997C>CT, p.Arg333Stp

Courtesy of Drs. P. Bayrak-Toydemir, W Donahue

ADCK2 Variant Segregation

Did not track according to affected status

Courtesy of Drs. P. Bayrak-Toydemir, W Donahue

Sanger Sequencing Continued Role

- Complex regions difficult to align with NextGen software
- Confirm that variants are "real"
- Confirm that variants are "significant"
 - Family concordance studies
- Familial testing

Conclusions

- Sanger sequencing has allowed clinical testing for numerous diseases
- Proper design and validation of sequencing tests can prevent analytical errors
- Sequence complexity can be addressed by primer design
- Interpretation complexity still a challenge
- Mutation databases with evidences for classification are needed
- Sanger sequencing will remain important as companion to next generation sequencing

Thanks to:

University of Utah ARUP Laboratories

- Rong Mao, MD
- Pinar Bayrak-Toydemir, MD PhD
- Genevieve Pont-Kingdon, PhD
- Perry Ridge, MS
- Karl Voelkerding, MD
- Whitney Donahue, PhD
- Friederike Gedge
- David Crockett, PhD